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Modeling Chromatin

É In vivo chromatin is extremely heterogeneous.
É Detailed models of chromatin often include

nucleosome geometry and heterogeneity.
É However, it is difficult to isolate the effects of

nucleosome localization in these complex models.
É Using a purely analytical approach, we can construct

an intuitive picture for how nucleosome positioning
affects chromatin structure.
É This allows us to incorporate nucleosome positioning

into global models of nuclear organization.
ChromEMT data from [4].

Detailed model [2].
Simplified model

(this poster).

Whole-nucleus model
(MacPherson et. al.,

in preparation).
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É Random binding explains nucleosome ChIP, even at transcription start sites [1].

É Uniformly-binding nucleosomes lead to
exponentially distributed linkers.
É Li ∼ Exp[1/〈Li〉].
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É A human nucleosome [5] with entry
(Ωentry) and exit (Ωexit) orientations of
the bound DNA labeled.
É The amount of DNA wrapping the

nucleosome dictates the spherical
angle θ.

É Two adjacent nucleosomes pictured.
É The histone octamer must align with

the major groove of the double helix.
É Therefore, the relative angle ϕ

between nucleosomes is determined
by linker length.

Kinked WLC

É The energy of a twistable wormlike chain (tWLC) is
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where ∂s~ti(s) = ~ω(s)× ~ti(s) and τ = 10.5bp−1.
É Its Green’s function
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has an exact solution in Wigner D-functions [3].
É We rotate the Green’s function by Ωkink using
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É Concretely, we compute a matrix B representing a
(linker, nucleosome) pair in Fourier space
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É Linkers combine via convolution (multiplying B’s)
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End-to-end Distance

We compute the end-to-end distance 〈R2〉 using lim
k→0

∂nB0
0

∂kn
= in〈Rn〉.

É Constant linker length chains will have
specific helical geometries.

É As linker variability increases, the
zero-temperature structure becomes a
random walk.
É The “diffusivity” of this random walk

determines the structure of
heterogeneous chains.
É Very little linker length heterogeneity

is need to create a random walk at
zero temperature.

É Exponential nucleosome chains
fluctuate about an effective WLC.

É Long length behavior can be
summarized by Kuhn length .
É The Kuhn length for constant linker

length is simply determined by its
zero-temperature structure.

Heterogeneous Chain Elasticity

É Kuhn length depends only on
the mean linker length for
exponential chains.
É Heterogenous chains are less

sensitive to changes in
average nucleosome spacing.
É The chromatin chain’s Kuhn

length approaches bare WLC
Kuhn length like ∼ 1/〈Li〉.

Looping Probabilities

We compute the looping probabilities as a modified J-factor, ignoring orientational
contributions:
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É For 〈Li〉 = 56bp:
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É As suggested by the 〈R2〉, the average
looping probability matches an
effective wormlike chain with
increased elasticity.

É Nucleosome repositioning can change
the looping probability by up to 6
orders of magnitude.
É Nucleosome repositioning is implicated

in enhancer loop formation.
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É Our work suggests that heterogeneity in nucleosome positioning plays a major
role in the local and global behavior of chromosomal DNA.
É Chromatin is an effective WLC with reduced persistence length.
É Even one base pair of linker length variance can be sufficient to create this

modified WLC.
É Nucleosome repositioning can expedite looping out to tens of kilobases.
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